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Abstract

We introduce Greedy Basis Pursuit (GBP), a new algorithm for
computing signal representations using overcomplete dictionaries. GBP
is rooted in computational geometry and exploits an equivalence be-
tween minimizing the ℓ1-norm of the representation coefficients and de-
termining the intersection of the signal with the convex hull of the dic-
tionary. GBP unifies the different advantages of previous algorithms:
like standard approaches to Basis Pursuit, GBP computes represen-
tations that have minimum ℓ1-norm; like greedy algorithms such as
Matching Pursuit, GBP builds up representations, sequentially select-
ing atoms. We describe the algorithm, demonstrate its performance,
and provide code. Experiments show that GBP can provide a fast al-
ternative to standard linear programming approaches to Basis Pursuit.

1 Introduction

The problem of computing sparse signal representations using an overcom-
plete dictionary arises in a wide range of signal processing applications [82,
31, 50], including image [7], audio [63], and video [3] compression and source
localization [66]. The goal is to represent a given signal as a linear superpo-
sition of a small number of stored signals, called atoms, drawn from a larger
set, called the dictionary. In traditional signal representation methods, such
as the DCT or various wavelet transforms, the dictionary is simply a basis:
the number of atoms in the dictionary is equal to the dimensionality of the
signal space and representation is unique. By contrast, in an overcomplete
dictionary the number of atoms is greater than the dimensionality of the sig-
nal space and representation is no longer unique; this enables flexibility in
representation [67], ‘shiftability’ [88], and the use of multiple bases [57, 92],
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but it requires a criterion to select from among the (many) possibile repre-
sentations. A natural one is sparsity, by which the representation selected
is the one that uses as few atoms as possible.

Computing sparse representations is NP-hard [73, 28], and so several
(heuristic) methods have been developed [67, 78, 16, 51]. These methods
optimize various measures of sparsity, typically functions of the represen-
tation coefficients [61, 60], using, for example, greedy algorithms [67], gra-
dient descent [64], linear programming [18], and global optimization [81].
Currently, the two most popular algorithms are Matching Pursuit [67] and
Basis Pursuit [17, 18].

Matching Pursuit (MP) is a greedy algorithm: a signal representation
is iteratively built up by selecting the atom that maximally improves the
representation at each iteration. While there is no guarantee that MP com-
putes sparse representations, MP is easily implemented, converges quickly,
and has good approximation properties [67, 95, 53]. Moreover, one variant
of MP, Orthogonal Matching Pursuit (OMP) [78], can be shown to compute
nearly sparse representations under some conditions [97].

Basis Pursuit (BP), instead of seeking sparse representations directly,
seeks representations that minimize the ℓ1-norm of the coefficients. By
equating signal representation with ℓ1-norm minimization, BP reduces sig-
nal representation to linear programming [17, 18], which can be solved by
standard methods [98]. Furthermore, BP can compute sparse solutions in
situations where greedy algorithms fail [18]. Recent theoretical work shows
that representations computed by BP are guaranteed to be sparse under
certain conditions [34, 33, 46].

While applying standard linear programming methods to compute min-
imum ℓ1-norm signal representations is natural, such methods were devel-
oped with very different problems in mind and may not be ideally suited
to the representation problem. For example, if the dictionary is not sparse
then the (normally fast) interior point methods advocated for BP [18] can
be slow. Furthermore, the design required to produce examples on which
greedy algorithms fail yet BP succeeds suggests that a greedy strategy could
be successfully applied to minimum ℓ1-norm representation.

In this article we develop a new method for computing sparse signal
representations, which we call Greedy Basis Pursuit (GBP). Like BP, GBP
minimizes the ℓ1-norm of the representation coefficients. However, unlike
standard linear programming approaches to BP, GBP proceeds much like
MP, building up the representation by iteratively selecting atoms.

While algorithmically similar to MP, GBP differs from MP in two key
ways: (1) GBP uses a novel criterion for selecting the next atom in the rep-
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resentation. The criterion is based on computational geometry, and effects
a search for the intersection between the signal vector and the convex hull
of the dictionary. (2) GBP may discard atoms that it has already selected;
this is crucial, as it allows GBP to overcome the ‘mistakes’ that MP makes
in atom selection when compared to BP [18].

While GBP returns the signal representation with the minimum ℓ1-norm,
and thus GBP enjoys the theoretical benefits of BP, the greedy strategy
of GBP leads to computational gains when compared to standard linear
programming methods. Experiments show our implementation of GBP to
be faster than off-the-shelf linear programming packages on some signal
representation problems, particularly high-dimensional problems with very
overcomplete dictionaries.

The remainder of this paper is organized as follows. In Section 1.1 we
formally state the sparse signal representation problem. In Section 2 we
review current approaches to the problem. Section 3 provides the geometric
interpretation of Basis Pursuit that underlies GBP. In Section 4 we describe
the Greedy Basis Pursuit algorithm. Section 5 present the results of exper-
iments with GBP. We discuss GBP in Section 6 and conclude in Section
7.

1.1 Problem Statement

Given a signal x and a dictionary D we seek a sparse representation of x. We
assume that x consists of d real valued measurements, that is, x ∈ R

d, for
example, a sound wave sampled at d points. We assume that D consists of
n atoms and is overcomplete, that is, D = {ψi}ni=1 and n > d, and that the
atoms are also d-dimensional and have unit norm, that is, ∀ψi ∈ D, ψi ∈ R

d

and ‖ψi‖2 = 1. A representation of x is a set of indices I, where I ⊆
{1, . . . , n} is a set of indices into D, and a corresponding set of coefficients
A = {αi}i∈I such that

x =
∑

i∈I

αiψi (1)

A representation is sparse if the number of atoms used, |I| (here | · | denotes
cardinality), is minimized over all possible representations.

Equivalently, in matrix notation, given a (column) vector x ∈ R
d corre-

sponding to the signal, and a d×nmatrix D corresponding to the dictionary,
where the ith column of D is the atom ψi, the sparse signal representation
problem is then to compute a (column) vector α ∈ R

n solving

Minimze ‖α‖0 subject to Dα = x (2)
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where ‖α‖0 is the ℓ0-norm of α, defined to be the number of nonzero entries
of α.

BP replaces the ℓ0-norm with the ℓ1-norm, seeking representations that
minimize

∑

i∈I |αi| In matrix form this corresponds to

Minimize ‖α‖1 subject to Dα = x (3)

2 Related work

The design of GBP draws on previous work in sparse signal representation,
particularly the contrast between MP and BP, and on ideas from subset
selection, which we summarize here. We also highlight some unexplored
connections between sparse signal representation and linear programming.

2.1 Matching Pursuit

Matching Pursuit (MP) [67] is the prototypical greedy algorithm [20] ap-
plied to sparse signal representation. MP is currently the most popular
algorithm for computing sparse signal representations using an overcom-
plete dictionary, and is used in a variety of applications [7, 79, 3]. MP has
also spawned several variants [41, 58, 42], including Orthogonal Matching
Pursuit (OMP) [78, 29], which itself has several variants [49, 21, 83].

MP computes a signal representation by greedily constructing a sequence
of approximations to the signal, x̃(0), x̃(1), x̃(2), . . ., where each consecutive
approximation is closer to the signal. MP begins with an ‘empty’ represen-
tation, x̃(0) = 0, and at each iteration augments the current representation
by selecting the atom from the dictionary which is closest to the residual,
x̃(t+1) = x̃(t) + α(t)ψ(t), where ψ(t) maximizes 〈ψi,x− x̃〉 over all ψi ∈ D.

MP is easy to implement, has a guaranteed exponential rate of conver-
gence [67, 95, 53], and recovers relatively sparse solutions [97], particularly
compared to earlier approaches such as the Method-of-Frames [26, 18].

A fundamental drawback of MP (and its variants) is its inability to
compute truly sparse representations. It is possible to construct signal rep-
resentation problems where, because of its greediness, MP intially selects an
atom that is not part of the optimal sparse representation; as a result, many
of the subsequent atoms selected by MP simply compensate for the poor
initial selection [30, 18]. This shortcoming motivated the development of
BP, which succeeds on these problems[18]; recent theoretical work explains
this phenomenon [34, 33, 46].
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These problems are also motivation for the development of GBP. Here
MP fails because of its poor intial selection of atoms; however, the atoms
intially selected by MP are not necessarily bad in general, after all, these
problems are specially designed for MP to fail on. For MP to succeed on
these problems, it would need to either make ‘better’ atom selections or be
able to discard ‘bad’ atoms to recover from poor selections (or both). GBP
adapts the greedy strategy to incorporate both of these ideas and compute
the same representations as BP.

2.2 Basis Pursuit

Basis Pursuit (BP) [16, 17, 18] approaches sparse signal representation by
changing the problem to one of minimizing the ℓ1-norm of the representation
coefficients. As noted above, this has theoretical advantages over greedy
approaches. Algorithmically, BP equates sparse signal representation with
linear programming.

A linear program is defined as follows: Given a matrix A ∈ R
m×n, a

(column) vector b ∈ R
m, and a (column) vector c ∈ R

n, compute a (column)
vector x ∈ R

n satisfying

Minimize cTx subject to Ax = b, xi ≥ 0 (4)

The signal representation problem is posed in BP as a linear program
with the following assignments (the variables on the right hand side are as
defined in Section 1.1 and the variables on the left hand side plug into the
linear program above):

A ← [ψ1 ψ2 · · · ψn −ψ1 −ψ2 · · · −ψn ]

b ← x

c ← [ 1 1 · · · 1 ]

x ← [α1 α2 · · · αn ]

Minimizing cTx is equivalent to minimizing the ℓ1-norm of the coefficients.
Note that A, corresponding to the dictionary, is doubled to include the
negative of each atom; this is due to the linear programming constraint that
coefficients be positive.

Chen et al. [17, 18] describe two algorithms for BP, BP-Simplex and
BP-Interior, which are the well-known simplex and interior point methods
of linear programming [98] applied to signal representation. The choice of
which BP algorithm to use depends on the structure of the dictionary: for
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dictionaries that have fast transforms, BP-Interior exploits these transforms
in the solution of the corresponding linear program. However, the running
time of linear programming is still typically an order of magnitude slower
than that of MP [18].

While standard linear programming methods have been highly tuned
over time, they are not necessarily ideally suited to the specific problem of
computing signal representations. For example, many linear programming
methods assume that the matrix A is sparse, as is the case for constraints
that arise in typical operations research problems, while this may not be
the case in signal representation problems. This raises the possibility that
alternative approaches could prove more efficient for the particular problem
of signal representation. Some inspiration for an alternative approach is pro-
vided by Chen et al. [18], who contrast MP and BP-Simplex, characterizing
MP as a ‘build-up’ approach and BP-Simplex as a ‘swap-down’ approach. If
A is not sparse, then the swaps (or pivots) executed by BP-Simplex can be
costly, in the computation of an individual swap, in the number of swaps,
and in the computation of an initial basis. GBP instead takes the ‘build-up’
approach to solving linear programming.

2.3 Subset selection

Sparse signal representation is closely related to the problem of subset se-
lection for regression, i.e., determining the optimal subset of variables on
which to regress a data set [69]. In sparse signal representation, the signal
corresponds to the data set, while the atoms correspond to the variables. In
fact, MP was inspired by Projection Pursuit [45, 56], in particular its use as
a regression algorithm [44]. Given this connection, it should not be surpris-
ing that some algorithmic ideas in sparse signal representation correspond
to earlier work in regression. For example, in Forward Selection the opti-
mal subset is constructed by starting with the empty subset and iteratively
adding variables to it, selecting at each iteration the variable that accounts
for most of the residual variance; this is essentially what OMP does. Back-
ward Elimination, which starts with the full set of variables and iteratively
pares it down, has similarly been adapted for signal representation [54, 22].

One standard algorithm for subset selection in regression which appears
to have no analogue in sparse signal representation is Efroymson’s algo-
rithm [38], also called step-wise regression, proceeds like Forward Selection,
but, like Backward Elimination, drops variables from the subset as they be-
come irrelevant. GBP follows a similar strategy, iteratively selecting atoms
and occasionally discarding them.
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2.4 Linear programming

While Basis Pursuit represents the first formal casting of signal represen-
tation as linear programming, linear programming has long been used in
sparse signal representation, particularly for deconvolution in various ap-
plications [37, 5, 74]. It is therefore not surprising that developments in
sparse signal representation closely parallel earlier developments in linear
programming.

Examining the literature in linear programming reveals that MP and
OMP have linear programming analogues: MP is technically equivalent to
one of the earliest (1948) methods developed for linear programming, called
von Neumann’s algorithm [23]. Similarly, OMP is equivalent to a phase I
algorithm [62] for the simplex method.

GBP builds up a solution to a linear programming problem; several linear
programming methods adopt a similar strategy, solving increasingly complex
problems as constraints or variables are iteratively introduced [93, 87, 76];
see also [55]. We remark that one method, an interior point method called
the gravitational method [72, 15], can be shown to be equivalent to GBP
when applied to the problem dual to (4). Empirically, the gravitational
method is faster than standard methods on some problems [15], which is
consistent with our results.

3 The Geometry of Basis Pursuit

GBP is based on computatonal geometry, specifically on the following geo-
metric interpretation of BP. Given a signal x and a dictionaryD, let conv(D)
denote the convex hull of D; the vertices of the facet of conv(D) intersected

by the vector x are the atoms in the minimum ℓ1-norm representation of x.

To see this, treat the signal as a vector and the atoms as points in
R
d. First consider the set of signals that have representations α such that
‖α‖1 = 1. By definition, this is the convex hull of the dictionary

conv(D) =

{

x

∣

∣

∣

∣

∣

x =
∑

i∈I

αiψi and
∑

i∈I

αi = 1, αi > 0

}

Note that because ‖ψi‖2 = 1, conv(D) is a polytope inscribed in the unit
sphere. Let xD be the point of intersection between the vector x and the
boundary of conv(D). xD lies on the boundary of conv(D) and can be
represented as a linear combination of the vertices of the facet of conv(D)
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ψ3
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conv(D)

Figure 1: A geometric interpretation of Basis Pursuit. The signal vector
x intersects the facet Fx of the convex hull of the dictionary, shown in
gray. The vertices of Fx, ψ1 and ψ2, are the atoms in the Basis Pursuit
representation of x.

containing xD; call this facet Fx. This representation is the minimum ℓ1-
norm representation: its ℓ1-norm is 1, and it is impossible to construct a
representation with ℓ1-norm less than 1. The minimum ℓ1-norm represen-
tation of x is simply a scaling of the minimum ℓ1-norm representation of
xD, and the atoms in the representation are the same. See Figure 1. (Note
that if we know the atoms in a representation of x it is straightforward to
calculate the corresponding coefficients.)

Thus BP is equivalent to finding the facet of conv(D) which intersects x.
Computing this intersection is known to reduce to linear programming [85];
to our knowledge, the converse is known [12] but never utilized to solve
linear programming. We use this equivalence to drive GBP.

A previous geometric interpretation of sparse representation [11] recog-
nizes that in two dimensions BP computes representations with atoms that
‘enclose’ x. The intepretation provided here can be viewed as the general-
ization of this notion to higher dimensions.

4 The Greedy Basis Pursuit Algorithm

Given the equivalence between BP and finding the facet of the convex hull
of the dictionary that intersects the signal vector, we propose Greedy Basis
Pursuit (GBP). GBP computes the minimum ℓ1-norm representation by
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searching for this facet directly.
The main idea behind GBP is to find the facet of interest by iteratively

‘pushing’ a hyperplane onto the surface of the convex hull of the dictionary
until it coincides with the supporting hyperplane containing the facet. This
approach is inspired by gift-wrapping methods [14, 59, 94] for the convex
hull problem in computational geometry [86]. To adapt gift-wrapping to
the problem of finding a particular facet, we need to specify how the initial
hyperplane is chosen and the direction in which the ‘wrapping’ proceeds at
each iteration. Below we describe the GBP algorithm, prove its convergence,
and discuss implementation issues.

4.1 The main algorithm

GBP takes as input a signal x ∈ R
d and an overcomplete dictionary D =

{ψi}ni=1, where n>d and ∀i, ψi ∈ R
d and ‖ψi‖2 = 1, and outputs a repre-

sentation of x as a set of indices I ⊆ {1, . . . , n} and a corresponding set of
coefficients A = {αi}i∈I such that x =

∑

i∈I αiψi.
GBP greedily searches for the facet of conv(D) that intersects x, call

it Fx. GBP proceeds by iteratively constructing a sequence of hyperplanes,
H(0),H(1),H(2), . . ., supporting conv(D). (We use the superscript (t) to
denote iteration t.) At each iteration, GBP maintains a set of indices I(t) and
a set of coefficients A(t), defining an approximation to x: x̃(t) =

∑

i∈I(t) αiψi,

and a normal vector n(t). The current hyperplane H(t) is defined to have
normal n(t) and contain the set {ψi}i∈I(t) . Each consecutive hyperplane
H(t+1) is a rotation of the current hyperplane H(t) determined by x̃(t). GBP
stops when H(t) contains Fx (and therefore x̃(t) = x).

4.1.1 Initialization

As we do not a priori know the orientation of Fx, we optimistically choose
the initial supporting hyperplane H(0) to have normal n(0) = x/‖x‖2. In
general H(0) will intersect only one vertex of conv(D), in particular the
atom ψi0 , where i0 = arg maxi〈ψi,n(0)〉. To see this, consider a hyperplane
with normal n(0) at some distance greater than 1 away from the origin; if we
move this hyperplane in the negative normal direction (towards the origin),
the first point of conv(D) it will intersect is ψi0 . (Note that this is also
the first atom selected by MP and OMP.) Thus I(0) = {i0}; this gives us
αi0 = 〈ψi0 ,x〉, A(0) = {αi0}, and x̃(t) = αi0ψi0 . For convenience, we denote
the set of currently selected atoms by Ψ(t) = {ψi}i∈I(t) .
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4.1.2 Iteration

Each consecutive hyperplane H(t+1) is constructed by rotating H(t) in a 2-
dimensional plane around a pivot point until another vertex of conv(D) is
intersected. The plane of rotation and the pivot point are defined in terms
of x̃(t). We define x̃(t) to be the best current approximation to x using
Ψ(t) and positive coefficients, that is, x̃(t) =

∑

i∈I(t) αiψi, where αi > 0 and

‖x̃(t) − x‖2 is minimized. Note that x̃(t) is the projection of x onto the
convex cone spanned by Ψ(t) with the origin at the apex; we provide details

on computing x̃(t) in Section 4.1.3. Let x̃
(t)
H be the intersection of the vector

x̃(t) with H(t). If d
(t)
H is the distance from the hyperplane to the origin (in

the normal direction), e.g., d
(t)
H = 〈ψi,n〉, i ∈ I(t), then

x̃
(t)
H =

(

d
(t)
H /〈x̃(t),n(t)〉

)

x̃ (5)

Let r(t) denote the residual vector, r(t) = x− x̃(t). Define v(t) to be the unit
vector in the direction of r(t) projected onto H(t).

v(t) =
r(t) − 〈r(t),n(t)〉n(t)

‖r(t) − 〈r(t),n(t)〉n(t)‖ (6)

The plane of rotatation is the 2-dimensional plane defined by the point x̃
(t)
H

and the vectors n(t) and v(t). The pivot point around which H is rotated is

x̃
(t)
H .

To compute the first vertex which the hyperplane intersects under this
rotation, we order the atoms by the angle θ they form with v, where θ is
given by

θi = arctan(〈ψi − x̃
(t)
H ,n

(t)〉/〈ψi − x̃
(t)
H ,v

(t)〉)
The atom selected is then ψk where

k = arg min
i
θi (7)

Once selected, the atom ψk is added to the set Ψ(t) and a new approximation
to x is computed, x̃(t+1). In this new approximation, some atoms in Ψ(t) ∪
{ψk} may be extraneous; they are discarded to form Ψ(t+1).

The new hyperplane H(t+1) can now be computed; it has normal

n(t+1) = −〈ψk − x̃
(t)
H ,n

(t)〉v(t) + 〈ψk − x̃
(t)
H ,v

(t)〉n(t) (8)

and contains x̃
(t+1)
H .
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ψi
H(0)

~
Hx (0)

(0)−n ~
Hx (1)

(1)−n

ψk

O

x

=
v(0)

H(1)

ψ

ψl

j

Figure 2: A schematic of the first iteration of GBP. The intial hyperplane
H(0) has normal n(0) in the direction of the signal x and contains ψi. The
atoms are projected from R

d to the n(0)-v(0) plane (shown) and sorted by
θ. The second atom selected is ψk, corresponding to a rotation of H(0)

around x̃
(0)
H to H(1). Note that v(1) is orthogonal to the n(0)-v(0) plane (and

therefore is not shown).

The procedure is repeated until x̃(t) = x, that is, H(t) contains Fx.
Figure 3 provides a visualization of GBP in action in three dimensions.

Each row depicts one iteration, the left column from a fixed viewpoint, the
right column projected to the n(t)-v(t) plane. The signal vector is green, the
unselected atoms blue circles, the selected atoms red discs, the convex cone
of Ψ(t) is gray, the normal is the solid black line, and two vectors in H(t) are
the dashed lines.

4.1.3 Computational details

At each iteration we compute x̃(t) as the projection of x onto the convex cone
of Ψ(t). To do this we first compute the projection of x onto the subspace
spanned by Ψ(t), and then we discard the negative coefficients.

One approach to computing this projection is to maintain an orthogonal
basis for the span of Ψ(t), updating it as atoms are added to Ψ(t), as in
OMP [78]; this is impractical in our case as most iterative orthogonalization
procedures are order-dependent and hyperplane rotation may cause us to
discard arbitrary atoms from Ψ(t).

Instead we maintain a biorthogonal system consisting of Ψ(t) and Ψ̃⊥(t),

the set of vectors biorthogonal to Ψ(t). Each element ψ̃
⊥(t)
i of Ψ̃⊥(t) satisfies
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Figure 3: GBP in action on a 3-dimensional problem. See text for details.
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the following two equations:

〈ψi, ψ̃⊥(t)
i 〉 = 1 (9)

〈ψi, ψ̃⊥(t)
j 〉 = 0, if i 6= j (10)

The biorthogonal vector ψ̃
⊥(t)
i can be understood as the component of ψ

(t)
i

that is orthogonal to all of the other vectors in Ψ(t), appropriately scaled.
That is, if we express an atom ψi ∈ Ψ(t) as

ψi = ψ
‖(t)
i + ψ

⊥(t)
i (11)

where ψ
‖(t)
i is the component of ψi lying in the span of Ψ(t)−{ψi}

ψ
‖(t)
i =

∑

j∈I(t),j 6=i

β
(t)
ij ψj (12)

and ψ
⊥(t)
i is orthogonal to the span of Ψ(t) − {ψi}, then the biorthogonal

vector to ψ
(t)
i is given by

ψ̃
⊥(t)
i = ψ

⊥(t)
i /‖ψ⊥(t)

i ‖2 (13)

Given the biorthogonal system, we can compute the current approximation
to x as

x̃(t) =
∑

i∈I(t)

α
(t)
i ψi where α

(t)
i = 〈x, ψ̃⊥(t)

i 〉 (14)

The biorthogonal system and x̃(t) can be updated as atoms are added to
and subtracted from Ψ(t). Such adaptive biorthogonalization methods have
recently been applied to MP [83, 4] and are standard in linear programming
([98], Chapter 8). We present pseudocode for adding an atom in Algorithm
2 and for substracting an atom in Algorithm 3.

4.2 Analysis

By construction, GBP computes the minimum ℓ1-norm representation of a
given signal. To prove this we show that GBP converges to an exact repre-
sentation in a finite number of steps and that the representation corresponds
to a facet of the convex hull of the dictionary.

First, we prove that GBP converges to an exact representation. At each
iteration of GBP there is a decrease in approximation error, as stated in the
following theorem.

13



Theorem 1. Given a signal x ∈ R
d and a dictionary D = {ψi}ni=1, where

n≥2d, ∀ψi ∈ D, ψi ∈ R
d and ‖ψi‖2 = 1, if ψi ∈ D then −ψi ∈ D, and the

atoms are in general position, if GBP is run with D and x as input and if

x̃(t) 6= 0, then at iteration t+ 1 of GBP, 0 ≤ ‖x− x̃(t+1)‖2 < ‖x− x̃(t)‖2.

Proof. At iteration t, let S be the hypersphere centered at x with radius
‖x − x̃(t)‖2, let ψk be the next atom selected by GBP, and let T be the
tangent plane to S at x̃(t). T contains the origin (if it did not, then some
scaling of x̃(t) would be a better approximation to x), and thus bisects
the unit sphere. Because the atoms are in general position and ψi ∈ D if
−ψi ∈ D, if |Ψ(t)| < d, then there will be at least one atom in the same
half-space of T as x. (Note that if |Ψ(t)|=d, we are done, as we would also
have x̃ = x.)

ψk lies in the same half-space of T as x: by construction, there is no atom

ψ0 such that 〈ψ0 − x̃(t)
H ,n

(t)〉 > 0, by general position, there is no atom ψ0

such that 〈ψ0 − x̃(t)
H ,n

(t)〉 = 0 and 〈ψ0 − x̃(t)
H ,v

(t)〉 > 0, and, by the ordering
of atoms by step 2(b) of GBP, GBP selects an atom in the same half-space
of T as x, if one exists.

ψk lies in the same half-space as x, we can find a point x̃+ǫ(ψk−x̃(t)) that
is interior to S and therefore closer to x than x̃(t). Therefore ‖x− x̃(t+1)‖ <
‖x− x̃(t)‖.

Theorem 1 also implies that GBP does not cycle. GBP may select the
same atom more than once, that is, GBP may select an atom, discard it,
and select it again (this behaviour depends on the shape of the facets of
conv(D)), but GBP will never revisit the same state. Because there are a
finite number of states and GBP improves at each iteration, GBP converges.
By the same arguments as Theorem 1, at convergence the final supporting
hyperplane contains a facet of conv(D) and thus GBP computes the mini-
mum ℓ1-norm representation.

The duality of GBP to the gravitational method [72] of linear program-
ming, implies that the computationaly complexity of GBP is exponential in
the worst-case [71]. Current results on the simplex algorithm suggest that
GBP is likely to be polynomial in the average [12] and smoothed [91] cases.

4.3 Implementation Issues

We briefly describe two obstacles that any implementation of GBP may en-
counter, degeneracy and numerical instability, and our approach to handling
them.
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4.3.1 Degeneracy

Degeneracy occurs when the atoms of the dictionary are not in general
position, that is, a k-face of conv(D) contains more than k + 1 atoms. De-
generacy can occur if the dictionary is specially designed, for example, if
the atoms are defined to be the vertices of a hypercube inscribed in the
unit hypersphere. If GBP encounters degeneracy, the updates described in
Section 4.1.3 will fail, resulting in an error. Although GBP does not cur-
rently include a mechanism to detect and handle degeneracy, incorporating
such a feature is possible. A simple solution is to perturb the atoms of the
dictionary suffciently.

4.3.2 Numerical instability

Numerical instability can occur in the biorthogonalization stage of GBP. Let
Ψ be a matrix corresponding to Ψ(t) for some t, where each row of Ψ is an
atom in Ψ(t), and let Ψ̃⊥ denote the corresponding matrix of biorthogonal
vectors. If at any iteration the matrix Ψ is ill-conditioned, the computation
of the biorthogonal vectors we have described may be unstable (similar diffi-
culties arise in Gram-Schmidt orthogonalization [84, 10]). One work around
is to compute a full biorthogonalization at each iteration, or at least when-
ever instability is detected. However, a full biorthogonalization can be costly,

as it is typically computed via the pseudoinverse [52]: since Ψ
(

Ψ̃⊥
)T

= I,

where I denotes the identity matrix, we can compute Ψ̃⊥ as (Ψ+)
T
, where

‘+’ denotes the pseudoinverse.
We instead opt to compute the biorthogonalization using an iterative

pseudoinverse technique [6]. This technique takes an initial estimate of the
pseudoinverse and iteratively updates it, converging to the true pseudoin-
verse. If the initial estimate is sufficiently close to the true pseudoinverse,
then the iterative pseudoinverse computation is substantially faster than
the standard pseudoinverse. This approach is well suited to GBP, as the
adaptive biorthogonalization already provides such an estimate.

The iterative pseudoinverse algorithm proceeds as follows. Given a ma-
trix Ψ and an initial estimate of the pseudoinverse Ψ+(0), the updates to
Ψ+ are computed by

Ψ+(t+1) ← Ψ+(t)
(

2I−ΨΨ+(t)
)

(Note that here t denotes the iteration of the pseudoinverse algorithm,
not the iteration of GBP.) For a detailed analysis of this algorithm, see

15



[90]. While a classic technique, this algorithm is the subject of ongoing
research [77, 80].

Our implementation of GBP tests if Ψ
(

Ψ̃⊥
)T

= I within a specified

level of tolerance after each adaptive biorthogonalization. If the test fails,
the iterative pseudoinverse algorithm is applied.

5 Results

We examine the performance of GBP. We compared the running time of
GBP to that of standard linear programming algorithms on three data sets,
random data, speech data, and seismic data, described below. We also
provide an example of GBP’s performance on a single signal and contrast it
with that of Matching Pursuit.

In each experiment, we measured the running times of GBP and stan-
dard linear programming algorithms on the signal representation problems
described below. The algorithms we compared were GBP, two variants of
the simplex method, and an interior point method.

The implementation of GBP used was our own, written entirely in Mat-
lab. The linear programming solvers used were those included in the Matlab
Optimization Toolbox 3.0 [1], and a freely available Matlab implementa-
tion [70] of the revised simplex method [24]. The Optimization Toolbox
version of the simplex method is the classical simplex method [25], with the
initial basis determined as in [8]. The Optimization Toolbox version of the
interior point method is essentially LIPSOL [99], a freely available interior
point solver that implements Mehrotra’s predictor-corrector method [68, 65].

For each problem, all algorithms were run and timed. All algorithms were
run under Matlab 7 on a 1.5GHz Pentium M processor running Windows
XP, with 1.25GB memory. On all problems all algorithms returned identical
representations.

5.1 Running times: Random data

The random data set consisted of 3000 randomly generated signal repre-
sentation problems, varying both the dimension of the signal space and the
overcompleteness of the dictionary. Each problem consisted of a randomly
generated signal and a randomly generated dictionary. The dimension d
of the problems varied over the set {8, 16, 32, 64, 128, 256}. The overcom-
pleteness k of the dictionaries varied over the set {2, 4, 8, 16, 32}. In each
problem, the signal x was randomly generated to be uniformly distributed
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on the unit hypersphere in R
d. The dictionary for each problem had 2kd

atoms; the first kd of these atoms were generated in the same fashion as
the signal, the second kd atoms were the negatives of the first kd atoms.
Additionally, the dictionary of each problem was perturbed: To each atom
was added Gaussian noise with variance 0.000001, after which the atom
was normalized to lie on the unit hypersphere; this was necessary to ensure
that the linear programming algorithms could compute the requisite matrix
inverses. For each d-k pair, 100 problems were generated.

Figure 4 shows running times of the three algorithms as a function of
overcompleteness for each dimension; the curve plotted shows the mean run-
ning time of each algorithm over the 100 problems of the specified dimension
and overcompleteness, with error bars showing the corresponding minimum
and maximum running times. (We do not show the results of the revised
simplex method here, as it was outperformed by the Matlab’s simplex algo-
rithm.)

5.2 Running times: Speech data

The speech data set consisted of 100 signal representation problems. Each
problem consisted of a signal randomly drawn from the TIMIT database [48]
and an overcomplete multiscale Gabor dictionary.

Each signal comprised 256 samples (d = 256) and was randomly selected
from the ‘train’ subset of the TIMIT database. The signals were mean
centered and normalized. Some samples are shown in Figure 5.

The dictionary used was a 9×overcomplete multiscale Gabor dictio-
nary (4608 atoms). The dictionary consisted of several fixed scale criti-
cally sampled cosine Gabor bases. Each atom was defined by the parame-
ters t and f as G(t, f) = exp−σ2t2 cos(2πft), where t ∈ {0 : ∆t : 1} and
f ∈ {0 : ∆f : d/2}, with ∆t = 2j/d, σ =

√

π/2/∆t, and ∆f = σ/
√

2π; the
scale parameter j varied over {0, 1, . . . , 8}. See [47, 40] for details and other
sampling schemes. Once the atoms were defined, they were perturbed as in
the random data case. Some samples from the final dictionary are shown in
Figure 6.

We show the running times of GBP, LIPSOL, and the revised simplex
method on the sound data set in Table 1. (The revised simplex method
outperformed Matlab’s simplex method.) We show the mean, minimum,
and maximum runninng times for each algorithm on the 100 signals.
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Figure 4: Running times for GBP, LIPSOL, and the simplex method (Mat-
lab) on the random data set, plotted as a function of overcompleteness for
each dimension. Note that GBP’s performance improves relative to the
other methods as the dimensionality of the problems increase.
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Figure 5: Four signals drawn from the speech data set. Each signal consists
of 256 samples.

Figure 6: Four atoms drawn from the multiscale Gabor cosine dictionary.

Algorithm Min Mean Max

GBP 40.41 48.72 56.35

LIPSOL 58.62 75.97 155.56

Revised Simplex 441.66 1297.65 2700.51

Table 1: Running times of GBP, LIPSOL, and the revised simplex method
on the sound data set, in CPU seconds.
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Figure 7: Four signals drawn from the seismic data set. Each signal consists
of 256 samples.

Algorithm Min Mean Max

GBP 42.29 48.83 55.05

LIPSOL 60.52 70.36 112.90

Revised Simplex 2233.45 2489.05 2831.59

Table 2: Running times of GBP, LIPSOL, and the revised simplex method
on the seismic data set, in CPU seconds.

5.3 Running times: Seismic data

The seismic data consists of 100 signal representation problem. Each prob-
lem consists of a 256 sample signal of seismic recordings from the North Sea,
4 times downsampled from the original data [89]; some samples are shown
in Figure 7. The dictionary used was the same as used in the speech exper-
iment above. We show the running times of GBP, LIPSOL, and the revised
simplex method on the seismic data set in Table 2.

5.4 Example: Speech signal

Figure 8 provides an example comparing GBP to MP on a 1024-dimensional
signal (Figure 8, top left), selected from the TIMIT speech database [48],
using a multiscale Gabor dictionary (n = 22528), similar to the one used
for the sound data. (Note that the other BP methods were unable to com-
pute representations on problems of this size in our environment.) Exam-
ining the approximation error of each algorithm as a function of iteration
(Figure 8, top right), we observe that while the approximation error of
GBP decreases somewhat more slowly than that of MP (note also that each
iteration of GBP is more costly), the error of GBP does appear to de-
crease approximately exponentially. Furthermore, the representation com-
puted by GBP is considerably sparser than that of MP, as indicated by
the sorted-amplitudes-curves and the ℓ1-norm of the representations. The
sorted-amplitudes-curves [61, 57] (Figure 8, bottom left) are plots of the

20



1 256 512 768 1024

−10

−5

0

5

x 10
−3

1 500 1000 1500 2000

−10

−8

−6

−4

−2

0

Iteration

lo
g(

er
ro

r)

GBP
MP

1 256 1024 2048

−12

−10

−8

−6

−4

−2

Index, sorted

lo
g(

α i)

GBP
MP

1 256 1024 2048

−12

−10

−8

−6

−4

−2

Index

lo
g(

α i)

GBP
MP

Figure 8: An example comparing GBP to MP on a speech signal (a). (b) The
log of the error (ℓ2-norm of the residual) as a function of iteration. (c) The
sorted-amplitudes-curves; observe that GBP produces a sparser representa-
tion than MP. (d) The (final) coefficient values, in order of atom selection.
(Note that the coefficient values change in GBP at each iteration.) See text
for discussion.

logarithm of the final coefficients, sorted in descending order; the rates of
decrease indicate the relative sparsity of the representations. The ℓ1-norm
of the representation coefficients are 6.33 and 8.83, for GBP and MP, re-
spectively. (Note that the results for GBP would be the same as those for
standard linear programming methods.) A notable feature of GBP is its
‘greediness’: the coefficients in the order of atom selection track the sorted-
amplitudes-curve, that is, GBP tends to select significant atoms early on
(Figure 8, bottom right). This demonstrates that it is possible to compute
Basis Pursuit signal representations and to be greedy at the same time.

6 Discussion

Our results show that GBP provides a fast alternative to standard linear
programming methods for sparse signal representation problems, particu-
larly when the dimension of the signal space is high and the dictionary is
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very overcomplete. While there are a variety of factors which may contribute
to the results, there are several algorithmic reasons why we expect GBP to
perform well relatively.

The efficient solution of linear programming problems depends in a com-
plicated way on the problem, the method of solution and its implementation,
and the available resources; see Bixby [9]. Thus the relative success of GBP
compared to the linear programming methods implemented in the Matlab
Optimization Toolbox is partially a function of the specific methods used and
their implementation. There are many possible linear programming meth-
ods, and many available implementations of those methods [43]; making an
exhaustive comparison of GBP against these methods impossible. However,
even if the linear programming methods against which GBP was compared
do not represent the current state-of-the-art, GBP itself has the potential
for significant speed increases through more efficient implementation.

Algorithmically, GBP has several advantages over standard linear pro-
gram solvers. First, most linear program solvers assume, for historical
reasons, that the constraint matrix is sparse, and they therefore rely on
techniques that exploit this sparsity, whether or not sparsity is actually
present [19]. The signal representation problems considered here are not
particularly sparse: the random dictionaries used in the random data set
are certainly not sparse, while the Gabor dictionary used with the sound
data set is somewhat sparse, however the sparsity is not as structured as
necessary for certain fast algorithms to be applicable [17, 18]. GBP does
not exploit sparsity, and therefore does not suffer when it is not present.
Second, GBP is efficient in the search for the next atom to select, because
this search is based on a geometric criterion that involves 2 projections per
possible atom. Simplex methods can be inefficient at this task as the search
can involve evaluating more than 2, even d, projections per possible atom;
see [98, 96]. Third, the updates in GBP are seldom of a full basis, further
reducing computation. Finally, the complexity of the simplex method de-
pends on the closeness of the initial solution to the optimal solution, which
in turn depends on the phase I algorithm by which the initial basis is se-
lected. GBP does not depend on an intial solution; in fact, GBP can be
interpreted as a combined phase I/ phase II linear programming algorithm.

One area which we have not explored that merits further investigation is
the dependence of the performance of GBP (and other sparse representation
algorithms) on the structure of the dictionary. For example, a dictionary
optimized for use with MP [27] or OMP [39] may well have very different
properties from one optimized for BP. The design of dictionaries has only
recently received attention in the signal processing community [27, 39, 2]
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(for work in neural computation, see [75, 64]); our work suggests that the
geometric properties of dictionaries play a crucial role in both the efficiency
of representation algorithms and the quality of the resulting representations.
Indeed, geometric considerations have already led to a better theoretical
understanding of sparse signal representation [36, 35].

As noted, part of the motivation for the development of BP is the obser-
vation that MP and OMP can fail to find sparse, in the ℓ0-norm sense, signal
representations [18], with much theoretical work showing under exactly what
conditions BP finds sparse representations, i.e., when the minimal ℓ1-norm
solution is equivalent to the minimal ℓ0-norm solution [34, 33, 46]. These
findings have made BP useful for areas beyond signal representation, includ-
ing compressed sensing [32] and error correcting codes [13], thus GBP may
prove useful in these domains.

7 Conclusions

We have described GBP, a new algorithm for Basis Pursuit, and demon-
strated that it is faster than standard linear programming methods on some
problems, particularly in high-dimensional signal spaces using very overcom-
plete dictionaries. A Matlab implementation of GBP is currently available
online at: http://www.cs.yale.edu/~huggins/gbp.html

Computational geometry has traditionally been the preserve of computer
science, particularly computer graphics and theoretical computer science; its
use here in the development of GBP highlights the relevance of computa-
tional geometry to signal processing. GBP also illustrates the interplay
between signal processing and linear programming. That an efficient linear
programming algorithm falls naturally out of sparse signal representation
is surprising, and suggests that researchers in signal processing should not
view linear programming, or optimization in general, as a black box: on one
hand signal processing naturally defines a set of problems that can serve to
drive research in linear programming, on the other hand, given the historical
parallels, optimization research deserves deeper examination by the signal
processing community.
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Algorithm 1 Greedy Basis Pursuit

Input

• A signal x ∈ R
d

• A dictionary D = {ψi}ni=1,

• A threshold ǫ ≥ 0

Output

A representation of x, consisting of

• A set of indices I ⊆ {1, . . . , n}
• A set of coefficients A = {αi}i∈I

such that x−
∑

i∈I αiψi < ǫ

Procedure

1. Initialize

(a) Select the first atom
k ← arg maxi∈{1,...,n}〈x, ψi〉

(b) Compute the initial approximation
αk ← 〈x, ψk〉, I(0) ← {k}, A(0) ← {αk}

(c) Initialize the biorthogonal system
Ψ̃⊥ ← {ψk}

(d) Initialize the hyperplane
x̃(0) ← αkψk, n← x/‖x‖, r← x− x̃

2. Repeat until ‖r‖ < ǫ

(a) Compute the center and plane of rotation
x̃H ← (〈ψi,n〉/〈x̃,n〉) x̃, i ∈ I
v← (r− 〈r,n〉n) /‖r− 〈r,n〉n‖

(b) Project atoms into the n-v-plane and select the next atom

k ← arg mini,∈{1,...,n} tan−1 〈ψi−x̃H ,n〉
〈ψi−x̃H ,v〉

(c) Compute the new representation and update the biorthogonal
system
{I,A, Ψ̃⊥} ← AddAtom(x,I,A, ψk, Ψ̃⊥)

(d) Discard any extraneous atoms
while ∃αi ≤ 0, i ∈ I do

{I,A, Ψ̃⊥} ← SubtractAtom(x,I,A, ψj , Ψ̃⊥)

(e) Update the hyperplane parameters
x̃←∑

i∈I αiψi

n← − 〈ψk−x̃H ,n〉v+〈ψk−x̃H ,v〉n
〈ψk−x̃H ,n〉v+〈ψk−x̃H ,v〉n

r← x− x̃
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Algorithm 2 AddAtom

Input

• The signal x

• The current representation I,A
• The atom to add k, ψk
• The current biorthogonal vectors Ψ̃⊥

Output

• The updated representation I,A
• The updated biorthogonal vectors Ψ̃⊥

Procedure

1. Compute the new biothogonal vector
∀i ∈ I, βi ← 〈ψ̃⊥

i , ψk〉
ψ⊥
k ← ψk −

∑

i∈I βiψi
ψ̃⊥
k ← ψ⊥

k /‖ψ⊥
k ‖22

2. Update the biorthogonal system
∀i ∈ I, ψ̃⊥

i ← ψ̃⊥
i − βiψ̃⊥

k

Ψ̃⊥ ← Ψ̃⊥ ∪ {ψ̃⊥
k }

3. Update the representation
αk ← 〈x, ψ̃⊥

k 〉
∀i ∈ I, αi ← αi − βiαk
I ← I ∪ {k}
A ← A∪ {αk}
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Algorithm 3 SubtractAtom

Input

• The signal x

• The current representation I,A
• The index of the atom to subtract k

• The current biorthogonal vectors Ψ̃⊥

Output

• The updated representation I,A,
• The updated biorthogonal vectors Ψ̃⊥

Procedure

1. Delete the atom from the representation
I ← I − {k}
A ← A− {αk}

2. Update the biorthogonal system
Ψ̃⊥ ← Ψ̃⊥ − {ψ̃⊥

k }
∀i ∈ I, γi ← 〈ψ̃⊥

k , ψ̃
⊥
i 〉/‖ψ̃⊥

k ‖22
∀i ∈ I, ψ̃⊥

i ← ψ̃⊥
i − γiψ̃⊥

k

3. Update the representation
∀i ∈ I, αi ← αi − αkγi
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